skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pacheco, Diego A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Sequenced behaviours, including locomotion, reaching and vocalization, are patterned differently in different contexts, enabling animals to adjust to their environments. How contextual information shapes neural activity to flexibly alter the patterning of actions is not fully understood. Previous work has indicated that this could be achieved via parallel motor circuits, with differing sensitivities to context1,2. Here we demonstrate that a single pathway operates in two regimes dependent on recent sensory history. We leverage theDrosophilasong production system3to investigate the role of several neuron types4–7in song patterning near versus far from the female fly. Male flies sing ‘simple’ trains of only one mode far from the female fly but complex song sequences comprising alternations between modes when near her. We find that ventral nerve cord (VNC) circuits are shaped by mutual inhibition and rebound excitability8between nodes driving the two song modes. Brief sensory input to a direct brain-to-VNC excitatory pathway drives simple song far from the female, whereas prolonged input enables complex song production via simultaneous recruitment of functional disinhibition of VNC circuitry. Thus, female proximity unlocks motor circuit dynamics in the correct context. We construct a compact circuit model to demonstrate that the identified mechanisms suffice to replicate natural song dynamics. These results highlight how canonical circuit motifs8,9can be combined to enable circuit flexibility required for dynamic communication. 
    more » « less
  2. Abstract The heterogeneity of brain imaging methods in neuroscience provides rich data that cannot be captured by a single technique, and our interpretations benefit from approaches that enable easy comparison both within and across different data types. For example, comparing brain-wide neural dynamics across experiments and aligning such data to anatomical resources, such as gene expression patterns or connectomes, requires precise alignment to a common set of anatomical coordinates. However, this is challenging because registeringin vivofunctional imaging data toex vivoreference atlases requires accommodating differences in imaging modality, microscope specification, and sample preparation. We overcome these challenges inDrosophilaby building anin vivoreference atlas from multiphoton-imaged brains, called the Functional Drosophila Atlas (FDA). We then develop a two-step pipeline, BrIdge For Registering Over Statistical Templates (BIFROST), for transforming neural imaging data into this common space and for importingex vivoresources such as connectomes. Using genetically labeled cell types as ground truth, we demonstrate registration with a precision of less than 10 microns. Overall, BIFROST provides a pipeline for registering functional imaging datasets in the fly, both within and across experiments. SignificanceLarge-scale functional imaging experiments inDrosophilahave given us new insights into neural activity in various sensory and behavioral contexts. However, precisely registering volumetric images from different studies has proven challenging, limiting quantitative comparisons of data across experiments. Here, we address this limitation by developing BIFROST, a registration pipeline robust to differences across experimental setups and datasets. We benchmark this pipeline by genetically labeling cell types in the fly brain and demonstrate sub-10 micron registration precision, both across specimens and across laboratories. We further demonstrate accurate registration betweenin-vivobrain volumes and ultrastructural connectomes, enabling direct structure-function comparisons in future experiments. 
    more » « less
  3. null (Ed.)